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The one-phonon thermal diffuse scattering in powder patterns of monatomic cubic materials has been 
investigated using a model that gives the correct frequencies and polarization vectors of the long-wave- 
length phonons for materials of arbitrary elastic anisotropy. Computer calculations have been made of 
the intensity distribution of this scattering and of the correction for its inclusion in measured integrated 
intensities of powder pattern reflections. Elastic anisotropy is found to produce marked differences, 
despite the powder pattern averaging; and, contrary to the Chipman-Paskin approximation, the 
integrated intensity correction is found generally not to vary smoothly with (h2+k2+ F) or linearly 
with scan length even for isotropic materials, as Suortti also noted. A much simpler method for cal- 
culating the integrated intensity correction has also been developed, based on a modified Warren model, 
that gives reasonably accurate values under most conditions even for very anisotropic materials and is 
several orders of magnitude faster than the primary method. 

Introduction 

Thermal diffuse scattering (TDS) in powder patterns 
forms a nonuniform background that peaks sharply 
at the positions of the crystalline reflections and thus 
is partially included in measurements of integrated 
intensities of the reflections. The distribution of this 
scattering in cubic powder patterns has been studied 
for relatively simple models of the thermal vibrations 
by Warren (1953), Herbstein & Averbach (1955), Pas- 
kin (1958, 1959), Chipman & Paskin (1959a), Borie 
(1961), and Suortti (1967), and the correction for the 
included TDS in measured integrated intensities from 
cubic powder patterns has been investigated by Chip- 
man & Paskin (1959b), Schoening (1969), and Suortti 
(1967). Suortti 's work is the most sophisticated of these 
studies, but his isotropic model for the thermal vibra- 
tions is still rather simple-all phonons are either pure 
longitudinal or (doubly degenerate) pure transverse, 
with the frequencies in each branch being independent 
of the orientation of the phonon wave vector, g; the 
actual Brillouin zone is replaced by a sphere of equal 
volume; and the dispersion in each branch is that of a 
linear chain with the mean long-wavelength velocity 
of that branch. 

The present study employs a more complex model 
with the advantage that it gives the correct frequencies 
and polarization vectors of the long-wavelength 
phonons for cubic materials of arbitrary elastic aniso- 
tropy; the actual Brillouin zone is again replaced by a 
sphere of equal volume, dispersion for each branch in 
any direction is that for a linear chain with the appro- 
priate long-wavelength velocity, and phonon polariza- 
tions are assumed to be independent of the length of 
the wave-vector. The study has been restricted to one- 
phonon scattering and to monatomic cubic materials. 
In the first part of the paper we consider the TDS 

intensity distribution predicted by our model and show 
that elastic anisotropy can produce quite marked dif- 
ferences. In the second part we investigate the correc- 
tion for the included TDS in measured integrated 
intensities, including numerical calculations to illustrate 
how it depends on various factors, and compare these 
results with those from previous approximations. We 
also develop an alternate, much simpler method for 
calculating the included TDS correction that is orders 
of magnitude faster than our primary method and is 
still reasonably accurate under most conditions even 
for very anisotropic materials. 

Intensity distribution 

We consider first the scattering from a single crystal of 
the monatomic cubic specimen. We assume that the 
temperature is high enough for there to be equiparti- 
tion of energy among the phonons. The intensity in 
electron units of the one-phonon TDS at a point, H =  

+g,  in reciprocal space, where ~ is the vector to the 
nearest reciprocal lattice point, can then be written 

J( t t )  = NfZexp ( - 2 M )  kBT ~ . ( H .  _%j)2. 
m .......... LJ v~j " (1) 

N is the number of atoms in the sample; m is the atomic 
mass; f is the atomic scattering factor; exp ( - 2 M )  is 
the Debye-Waller temperature factor; kB is the Boltz- 
mann constant; T is the absolute temperature; and 
vgj and %i are respectively the frequency and the pol- 
arization vector for the phonon with wave vector g in the 
j t h  branch ( j  = 1,2, 3). This expression is exact for X-ray 
scattering, but the corresponding relation for neutron 
scattering is only approximate (Cochran, 1963; Willis, 
1969). Note that our wave vectors and other reciprocal 
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space quantities do not include the factor 2n that is 
incorporated there in some systems of notation. 

The spherical Brillouin zone of our model has a 
radius, gin~a, defined by 

(4rc/3) (gm/a)3= n/v 

where a is the real cubic lattice parameter; v ( = a  a) is 
the volume of the real cubic unit cell; n is the number 
of atoms in the cubic unit cell; and gm is dimensionless 
for convenience. The assumption of linear chain 
dispersion for our model gives 

voj= VoAgl 
sin zc _g__ 

2 gm 
ZC g 
2 gm 

(2) 
= VoAgl S(g), 

where Voj is the long-wavelength velocity for phonons 
in the j t h  branch with wave-vector parallel to g; and 
g =  algl, dimensionless. Then, assuming that the phonon 
polarization vectors are independent of the magnitude 
of the phonon wave vector, equation (1)can be written 

j(i.I)= NfZ exp ( - 2 M )  knT [ 1 ]2 1 ( H . % j )  2 

(3) 
where 0 is the density of the crystal and where the 
phonon velocities and polarization vectors are those 
for the long-wavelength phonons with wave vector 
parallel to g. 

For crystals of cubic symmetry equation (3) can be 
manipulated into an alternative form (see Waller, 
1925; Nilsson, 1957) that avoids the need for explicit 
evaluation of the phonon polarization vectors and velo- 
cities and thus is more amenable to calculations. Let 
us introduce dimensionless vector components and 
ratios of elastic constant combinations through the 
relations 

H = hjta~. + hza~ + haa; 

g = glal + g2a2 + g3a3 
2 2 2 H =hx+hz+h~ 

g2 =glZ+ 0.2+ 0.2 
,52 ,53 

XI. = ( C l i - -  C 1 2 -  2C44)/C44 (4) 

X2 = X l ( C l l  "-1- C12)/Cll  

x~ = x~( C,~ + 2(::1,. + c4D/ c,~ 
X4 ~--- (C12 + C44)/Cll  

X s = ( C l l - - C , 4 ) / C l l ,  

the a* being the axes of the cubic unit cell in reciprocal 
space. Equation (3) can then be written 

J ( H ) =  Nfz exp ( - 2 M )  k ,T  [ 1 ]2 C(H,g) 
• ( v / n )  - -  ~ D(g) (5) 

where 
i 2 4 2 2 2 2 2 2 2 H g -Xsg (hagl+hzge+hag3) ] 

1 + x2(h~g~g~ + h~g]g~ + h~g~g~) ] 
[hlhzglg2(xlg] + g2) + h2h3g;] ~ (6) 

C(H, g) = C~4 _ 2x4 [ × ga(xlg~ + g2) + h3hxg3gl [ ] 

L × (x~g~ + g~) Jl 
and 

D ( g ) = g 6 + x z g 2 ( g ~ g Z 2 +  2 2 2 2 2 2 2 g z g z + g a g l )  . (7) + x 3 g l g 2 g 3  

If the crystal is elastically isotropic, x~--x2 = x3 = 0 and 
x4 = x5 and equations (5)-(7) yield the intensity relation 
for Suortti's model. 

The intensity expression for Warren's much simpler 
model (one velocity for all phonons) is obtained by 
setting S(g)= 1 and replacing the ratio, C(H,g)/D(g), 
by its average over all orientations of g (with fixed H), 

C ( H , g ) > _  J¢~ n 2 
D(g) 3 g2 (8) 

where the velocity factor, 3((', is evaluated in various 
ways (Nilsson, 1957; Walker & Chipman, 1969). For 
elastic isotropy, 

,)U=1/C~1+ 2/C44 . 

We now average equation (5) over all orientations of 
H to obtain the one-phonon TDS intensity for a 
powder pattern. This average will include contribu- 
tions from points in Brillouin zones around a number 
of non-equivalent reciprocal lattice points, each 
weighted by its multiplicity. Let the position of H in 
the Brillouin zone around the reciprocal lattice point 
given by xj be specified by a polar angle ~,, measured 
from % and an azimuthal angle ~0 with arbitrary zero. 
The maximum angle, Vmj, for H at the boundary of 
the spherical Brillouin zone, is determined by 

gZ m = H 2 + "c 2 - 2 H z  cos  ~/mj, 

where z=a]~[, dimensionless. The one-phonon TDS 
intensity for a powder pattern is then given by 

J ( H ) =  Nf2 exp ( -  2M) k ,T  ~,pjij(H) (9) 
(v/n) 4re j 

where 

I j ( H ) =  S ( ~ -  D(g) sin V d~,d~0 (10) 

and where the sum is over the different reciprocal 
lattice points, of multiplicity p j, whose Brillouin zones 
are intercepted by the sphere of radius H. 

The Debye-Waller exponent for a monatomic cubic 
sample can be written 

k .T  (H.  %j)2 
2 M -  Nm ~oj v~-; 

where the sum is over all phonons. By making the same 

A C 28A - 7 
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approximations as above and changing the sum over 
wave vectors to an integration, this can be evaluated as 

2M ksT  H z - 1-3862Y (11) 
(v/n) gZ,,, 

where 

. . . .  g,, o S( dg 1.3862. 

Then by combining equations (9) and (11) one can 
write 

J(H) _ gZ,, 1 
N f  z e x p ( - 2 M )  2M - -1;3862~ 4nil  T ~ p j I j (H)  . 

(12) 

The normalized intensity of equation (12), denoted (71 
in most studies, is a convenient quantity for comparing 
predictions for different materials or different models, 
since factors that only alter the intensity J(H) by a 
constant multiplier are canceled. Thus this normalized 
intensity for anisotropic materials may depend on the 
ratios of the elastic constants but not on their magni- 
tudes, while the actual intensity J(H) of course does 
depend on these values. 

We have used equation (12) to calculate the normal- 
ized TDS intensity distribution for body-centered cubic 
samples with three quite different sets of elastic con- 
stants,* illustrating (a) almost perfect isotropy (aniso- 
tropy factor AF=2Caa/(Cll-Clz)  = 1"008); (b) large 
anisotropy favoring (110) shear (AF=9.21),  and (c) 
large anisotropy favoring (100) shear (AF=0-254). 
The results are given by the three curves of normalized 
intensity as a function of H plotted in Fig. 1. The curves 
all show sharp peaks at the positions of the powder 
pattern reflections, but the feature to be noted is that 
the curves for the anisotropic cases show appreciable 
systematic differences from the curve for the isotropic 
case, with the effects for the case with AF > 1 generally 
being opposite in sign to those for A F <  1. Elastic 
anisotropy thus can still produce significant effects 
despite the powder pattern averaging. It should be 
added that our cases (b) and (c) represent cases of 
rather extreme anisotropy and that most materials, 
being less anisotropic, will show smaller effects. 

It is of interest to compare our results for the iso- 
tropic case with the corresponding results from 
previous approaches. Suortti's model gives the same 
results as ours, since the two models do not differ in 
the case of isotropy. The two-velocity model of Paskin 
(1959) neglects dispersion, causing the calculated 2M 
to be smaller than our value [equation (11)] by the ratio, 
1:1-386, and its normalized intensity for values of H 
beyond the first reflection is larger than our results 
near reflections (theoretically, by 38.6% at the singu- 
larity) and smaller than our results near the minima 
between reflections (by as much as 15 %, between the 
first two reflections). The model of Warren (1953) 

* The data are for (a) tungsten, (b) fl-CuZn, and (c) RbI. 

neglects dispersion and also assumes that longitudinal 
and transverse phonons have the same velocity; the 
effects of these two approximations largely counteract 
one another here, and the normalized intensity dis- 
tribution for values of H beyond the first reflection 
differs from our curve by 6.6% at the singularities 
and by only + 5% or less near the minima. Then, 
because of the smaller value of 2M, the 'actual'  
intensities J(H) for the Paskin and Warren models 
will be reduced further by the factor, 1/1.386, compared 
to ours, unless a common value of 2M is used in all 
calculations. 

Included T D S  correction 
Theory 

The scattered power from a polycrystalline specimen 
(neglecting absorption) entering a fixed rectangular 
detector slit can be written 

P= IeLW I z (H)J(H)dH (13) 

where J(H) is the intensity in electron units of the 
scattering under consideration; H is the dimensionless 
reciprocal space variable introduced earlier, given by 
H =  (2a sin 0)/2, where 20 is the scattering angle and 3. 
is the wavelength; le is the electron unit; L and W are 
the slit length and width respectively; and z(H) is the 
resolution function of the experiment, a function of 
the mean scattering angle of the receiver slit and the 
instrumental divergences and wavelength distribution, 
normalized so that 

l z (H)dH= 1 . 

1"5 

1"0 

0"5 

i! 
i 

s " - "  
.. t 

H =  - -  
2a sin 0 

Fig. 1. The normalized TDS intensity distribution for powder 
patterns of monatomic b.c.c, materials. The radial reciprocal 
space variable H has the value, 2, at the position of the 200 
reflection. The solid curve is for an elastically isotropic 
material (AF= 1-01), the dashed curve is for a very anis- 
otropic material with easy (110) shear (AF=9-21), and the 
dotted curve is for a very anisotropic material with easy 
(100) shear (AF = 0.25). 
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To simplify calculations, we shall assume that the 
wavelength distribution of the primary beam is the 
dominant factor in the resolution function and neglect 
the effects of other factors such as beam divergences 
and receiver slit dimensions. Equation (13) then be- 
comes 

e = I e Z W  ~ w , J ( n l )  ( 1 4 )  
i 

where wi is the weight of the ith wavelength component 
2t, normalized so that 

~ w ~ = l  , 
i 

and H~ = (2a sin 0)/2, where 20 is the mean scattering 
angle for the detector slit. 

Consider now the integrated scattering, E, measured 
when the detector moves with constant angular velo- 
city 2o9 in a scan from 201 to 202 which takes it through 
the powder pattern reflection, H =  z = (h 2-1- k 2-t- 12)1/2, 
where h, k, and l are the reflection indices. We assume 
that this scan is short enough and the wavelength 
spread small enough for the rate of change of the 
variables Hi to be treated as constant throughout the 
scan and as independent of wavelength, i.e. I-:Ii =1-:I = 
co(2a cos 0)/2, where 0 and 2 are average values. We 
then can write 

E= S Pdt 

I~L W I ~21 -- . ~. wi J(H)dH, 
H T ~Hl l  

(15) 

where Hlt=(2a sin 01)/2l, and where we have chosen 
0,>0~. 

The intensity function JB(H) for the Bragg powder 
pattern reflection is given by 

J n ( H ) -  N'IFI2p O(z -H) ,  (I6) 
4~Z "2 

where N'  is the number Of unit cells in the sample; 
F and p are the average structure factor and the multi- 
plicity of the reflection respectively; z z = h z + k z + l 2 
for that reflection; and the delta-function is normalized 
so that 

S ~ ( r - H ) d H =  1 

The integrated intensity of the Bragg powder pattern 
reflection measured during this scan is then obtained 
from equations (15) and (16) as 

LL  W N'IFI2p 
EB-- B 4 ~  z (17) 

which is consistent with the usual expression (James, 
1948). 

The integrated diffuse scattering measured during 
the scan can then be obtained from equations (15) and 
(17) as 

4~C I nu Eo=En ~ w, JD(H)dH (18) 
N'IFIZp l OHlt 

where JD(H) is the intensity function for the diffuse 
scattering. 

A weighted background often subtracted from such 
a measurement is obtained by multiplying the average 
of the background power at the ends of the scan by 
the scan time, (H21- Hu)/l:l= (H 2 -  H1)/12I. From 
equations (14) and (17) this can be written 

E~,= En 4~2 ~-TFFI- ~ (/-/2- H1) ~ w,{Jo(Hu)+ JD(H2,)}/2. 

(19) 

We now confine our attention to one-phonon TDS, 
using the intensity function given by equation (9). 
Then, noting that for small scans 

N f  z exp ( - 2 M )  N'IFI 2 
(v/n) -- v 

equations (18) and (19) give 

EB m O~ 1 __ 

and 

E; -~i - 

EB 

knT Z 2 I H2i 
wl Z p~Ij(H)OH 

1) p OHlt d 

kBT z 2 
v p 

( / 4 2 - / t l )  

(20) 

x ~ w, ~ pj{Ij(Ha,) + Ij(H2,)}/2 (21) 
j 

and the background-corrected, 'measured' integrated 
intensity, EM, is related to the integrated intensity of 
the Bragg powder pattern reflection, EB, by 

EM =EB(1 +~1--~i) 

= En(1 + ~). (22) 

The function It(H ) [equation (10)] has a singularity at 
g = 0  which requires special treatment in a numerical 
integration of equation (20). Our procedure, following 
the method shown in the section, Theory 2, of Walker 
& Chipman (1970), has been to transform that part of 
the integral through a small volume enclosing the 
reciprocal lattice point bounded by sections of conical 
(constant ~u) or spherical (constant H) surfaces into 
an integral over the surface of that volume, writing 

I l I [S-~g)] 2 CCH'g) sin ~vdHd~d~° D(g) 

D(g) H 2 g, dA (23) 

5P 

A C 28A - 7* 
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where Se denotes the surface of that small volume, and 
g, is the component of g perpendicular to the dif- 
ferential area, dA. Evaluation of the surface integrals 
and the remaining volume integration of equation (20) 
is then straightforward. 

Calculation 
We have developed a computer program to calculate 

the included TDS correction ~ on the basis of the 
methods and equations of the preceeding sections. 
The program, called PTDS2, is written in FORTRAN 
IV and is described in detail elsewhere (Walker & 
Chipman, 1972a). It involves a three-dimensional 
numerical ir.tegration [equations (20), (21) and (23) 
combined] over the segment of the Brillouin zone 
around each nonequivalent reciprocal lattice point 
that is intercepted in a given scan. Using this program, 
with integration parameters chosen to yield results 
accurate generally to 1% or better, we have carried 
out calculations to investigate the dependence of this 
correction on a number of factors. 

Let us consider first the results obtained for an 
elastically isotropic sample, tungsten. We acknowledge 
that many of the conclusions to be drawn from these 
calculations were pointed out previously by Suortti 
from his isotropic model calculations• However, Suort- 
ti's work is apparently not widely known, judging from 
the continued use of poor approximations in several 
recent papers, and our calculations are more extensive 
and systematic than his, so our calculations and con- 
clusions are given here to illustrate and amplify the 
results for an isotropic case before we consider the 
further effects of anisotropy. 

We have calculated the TDS correction ~ for a series 
of reflections from tungsten at 300°K using a single 
wavelength, 2=0.71140/~, (midway between the wave- 
lengths of Mo Kcq and Mo K~2), and a symmetrical 
scan through each reflection with 202--201 = A20= 2.5 ° 
(which includes 0.4 of the range to adjacent reflections 
for the closest group of lines). The results are plotted 
as the solid points in Fig. 2(a) as a function of the sum 
of the squares of the indices of the reflection. The ver- 
tical bar drawn from the horizontal axis at each value 
of TZ=h2-t-k2-t-12 has a length proportional to the 
multiplicity of that reflection. The values of c~ show 
large variations with increasing z 2, with the value for 
the 444 reflection being negative, and there is a strong 
correlation between the relative sizes of the values of 
for adjacent reflections and the relative multiplicities 
of those reflections. The small size of the corrections is 
caused by the unusually strong elastic constants of 
tungsten. 

To test the sensitivity of the calculation to the 
approximations in our model, we have repeated this 
calculation for two alternate dispersion approxima- 
tions, in case (0) putting S(g) equal to unity (no dis- 
persion, reducing 2M by 1/1.386), and in case (2) re- 
placing S(g) by IS(g)] 2 (greater dispersion, increasing 
2M by 1.502). The relative change in a value of 0c 

resulting from using case (0) was only + 3.6 % or less 
for 23 of the 27 reflections and was only + 5.8 % or 
less for these same reflections on using case (2). [The 
reflections with r2=12, 16, 32, and 48, all of low 
multiplicity compared to neighboring reflections, 
showed changes in c~ of 4-8, -2 .4 ,  12.0 and 7-6% 
respectively for case (0) and changes of -13.2,  10.4, 
-27 .0  and -20 .6  % for case (2).] A comparison with 
case (0) was also made for a shorter scan, A20= 1.0 °, 
which showed a maximum difference in c~ for any 
reflection of only + 1.2 %. Since cases (0) and (2) cor- 
respond to quite large changes in the shorter-wave- 
length phonons, it is clear from these results that the 
characteristics of the long-wavelength phonons must 
dominate the calculation of e. The limitations of the 
spherical Brillouin zone approximation and the as- 
sumptions concerning phonon dispersion and polariza- 
tion in our model affect only the shorter-wavelength 
phonons, so the error in c~ due to these approximations 
thus generally should be quite small. 

To investigate the effects of instrumental factors, we 
have repeated the original calculation, replacing the 
single wavelength by the two wavelengths, Mo Kcq 
and Mo Kc~2, with weights of -23- and ½ respectively, 
which gives a reasonable first approximation to a real 
Mo Ke doublet. The percentage change in the value 
of c~ caused by the change to this wavelength doublet 
is plotted for the various reflections in Fig. 2(b). There 
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Fig. 2. (a) The included TDS correction for reflections from 
an isotropic b.c.c, material, tungsten, at 300°K measured 
with symmetrical scans and a mean Mo K~ single wave- 
length, as a function of the sum of the squares of the indices 
of the reflections. The solid points display ~*= ct for a scan 
length, A20=2.5 °. The crosses display ~*=5ct for a scan 
length, A20=0.5 °. The vertical line drawn from the horizon- 
tal axis at each value of h2+k2+/2 has a length propor- 
tional to the multiplicity of that reflection. (b) The percent- 
age change in the values of ~ for the 2.5 ° scan when the single 
mean wavelength is replaced by the appropriately weighted 
two wavelengths of Mo K~I and Mo K~2. 
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is a reduction in the value of e for each reflection (the 
value for 444 becoming more negative) which increases 
overall with increasing z z, and the reduction is greater 
for the reflections of low multiplicity, particularly those 
adjacent to reflections of high multiplicity. The change 
is 10% or more for 12 of these 27 reflections, and 
ranges up to 53 % for the 444 reflection. This 'instru- 
mental '  effect varies with the length of the scan; a 
repeat of these calculations for a scan length, A20= 
2.0 °, shows the percentage reduction in e due to the 
change to this wavelength doublet to be larger for the 
2.0 ° scan than for the previous 2-5 ° scan for 21 of the 
27 reflections. The effect seems generally large enough 
for it not to be neglected where accurate corrections are 
required. 

Next we have investigated the dependence of c~ on 
the length of the scan by repeating the original calcu- 
lation for values of A20 ranging from 0.5 to 3.0 °. The 
0.5 ° scan is too short to be practical for most real ex- 
periments, but it is useful in indicating the behavior 
of the TDS correction in the limit of very short scans. 
The results for this 0-5 ° scan are given by the crosses in 
Fig. 2(a), where we have plotted 5c~, not c~, in order to 
facilitate comparison with the values of c~ for the 2.5 ° 
scan. The values of 5ct for this short scan show an al- 
most smooth monotonic dependence on z z, with only 
small reductions for the low multipliticy reflections. A 
comparison of these values of 5e with the corresponding 
values of e for the 2.5 ° scan shows that c~ has not varied 
linearly with A20 for any reflection, with quite large 
differences for some low multiplicity reflections but 
only small differences for a few high multiplicity 
reflections. The non-linearity increases with increasing 
A20 at a rate dependent on the relative multiplicities 
of neighboring reflections, so that for A20=2.5 °, the 
derivative, de/d(A20), has become negative for six 
reflections (zz= 12, 16, 32, 40, 48, and 52). This non- 
linearity is due to the contributions to c~ from the inter- 
cepted segments of Brillouin zones around all other 
reciprocal lattice points except those for the reflection 
being measured, these 'other '  contributions being 
negligible for very small scans but increasing approxi- 
mately as (A20) 3 and generally being negative. 

Chipman & Paskin (1959b) derived an expression 
for the included TDS in symmetrical powder pattern 
scans based on Warren's model that has subsequently 
been widely used. In our nomenclature their expression 
can be written 

kBT 2rc~ 
~cP-- zZ(Hz -/-/1) 

v 3 (24) 
oc z z cos OA20 

where there has been some controversy (see Borie, 
1961) over the value of the proportionality constant 
that should be used. Regardless of that question, 
equation (24) predicts that the correction varies 
smoothly as z 2 cos 0 for constant A20 and depends 
linearly on A20, while our results show that neither 

of these predictions is usually satisfied for reasonable 
scan lengths. It thus must be emphasized that the 
Chipman-Paskin relation is a poor approximation 
which can be appreciably in error for normal experi- 
mental conditions, even when the material is elastically 
isotropic. 

Now, to examine the effects of elastic anisotropy, 
we have calculated the TDS correction for the same 
series of reflections from a very anisotropic b.c.c. 
sample (data are for fl-CuZn, with AF=9 .21)  for the 
same single wavelength and temperature and for sym- 
metrical scans of two lengths, A20=0.5 and 2.5 °. The 
results for the 0.5 ° scan are shown by the crosses in 
Fig. 3, where again we have plotted 5e, not ~, to 
facilitate comparison with the values of c~ for the 2-5 ° 
scan, and where adjacent points have been linked 
with straight line segments to make the results more 
visible. In contrast to the almost smooth monotonic 
dependence of the isotropic sample short-scan data, 
these values for the anisotropic sample show quite 
large variations as a function of z z, with plus and 
minus departures from the average curve ranging up to 
a factor of two. The Chipman-Paskin relation [equa- 
tion (24)] clearly is a poor approximation for this anis- 
otropic sample even in the limit of small scans. 

The values of ~ for the 2.5 ° scan of the reflections 
from this sample are given by the solid points in Fig. 3. 
A comparison with the data for the 0.5 ° scan shows 
again that e does not generally vary linearly with A20, 
with large differences for some reflections and only 
small differences for others. This non-linearity differs 
from that for the isotropic sample in several instances 
(e.g. the 444 and 400 reflections) as a result of the 
effects of the different anisotropic TDS distributions 
around neighboring reciprocal lattice points as well as 
their relative multiplicities. The substantial size of 
these values of c~ should also be noted. 

Approximation 

The method of evaluating the correction ~ presented 
in the preceding sections seems capable of yielding an 
accuracy of 1% or better for a wide variety of con- 
ditions, but it can require an appreciable amount of 
time on a high-speed computer. For example, the 2-5 ° 
scan data for the isotropic sample shown in 
Fig. 2(a) took an average of 6.5 seconds of CDC-6400 
computing time per reflection, while the 2.5 ° scan data 
for the anisotropic sample given in Fig. 3 took ap- 
proximately 26 seconds per reflection because of the 
finer mesh needed with such anisotropy. We have thus 
looked for a simpler approach that would allow a con- 
siderable reduction in computation requirements where 
a moderate loss in accuracy could be accepted. 

We consider the simple Warren model for the elastic 
vibrations, but with one modification: The velocity 
factor to be used for all the phonons in a Brillouin 
zone is determined by a circular average over those 
long-wavelength phonons whose wave vector g is per- 
pendicular to the reciprocal lattice vector to the center 
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of that Brillouin zone, rather than by a spherical aver- 
age over all orientations ofg. The factor ~¢:" in equation 
(8) is then replaced by Kj, where 

K, #, 
D(g) / g ± , ; =  3 g2" (25) 

This modification has two major consequences; (a) 
the average involves mainly a set of ' transverse'  modes, 
and (b) if the crystal is elastically anisotropic, the velo- 
city factor Kj can be different for phonons in zones 
around different reciprocal lattice points. The values 
of K: for general reciprocal lattice points for an anis- 
otropic cubic crystal can be obtained numerically from 
equations (6) and (7). For h00 reciprocal lattice points 
and arbitrary anisotropy (and thus for all reciprocal 
lattice points in the case of elastic isotropy) 

K.0o = 3 /C44 .  

Equation (10) is readily evaluated for this modified 
Warren (W') model, giving 

I~(H)= 2rcKL _H ln ( gm ) 
3 zj [ H - z  j[ " 

(26) 

The TDS correction is now obtained from equations 
(20)-(22) with equation (26). The evaluation of equa- 
tion (20) involves only standard integrals with no 
further approximations. After some manipulations the 
result for a single wavelength can be written 

(X W ,  ~ _ _  v 3 ~'o ~ K j ,  ~ J o 

[ (82 q- ~1) (z'0 -I- "cj) -t- (8~ - 81z)/2 / 

I / (27) 

where the sum is over the non-equivalent reciprocal 
lattice points for which (H~-g,,)<vj<_(Hz+gr,,); 
where el = ( r0 - / /1 )  and ez = (1-12- r0), except that if 
(Hl-g,,)<'c.j<(H2-g,,,), then e z = g , , - ( r 0 - r j ) ,  or if 
(Hl+g,.)<zj<(Hz+g,,), then e t = g , , + ( r o - Z j ) ;  and 
where the subscript 0 indicates a value for the reflection 
being scanned. The result for multiple wavelengths is 
then obtained by evaluating equation (27) in turn with 
the values of H~ and Hz for each wavelength and sum- 
rning the results with the appropriate weights. 

Equation (27) reduces to the Chipman-Paskin rela- 
tion, equation (24), if the scan is symmetrical (i.e. st = 
e2), if one neglects the terms from all other reciprocal 
lattice points except those being scanned (those with 
rj=v0), and if the differences between the various Kj 
and ~g" are ignored. 

We have developed a computer program to calculate 
the various velocity factors Kj and the correction Ctw' 
according to the above equations. The program, called 
PTDS3, is written in F O R T R A N  IV and is described 

in  detail elsewhere (Walker & Chipman, 1972b). It 

first evaluates any unknown Kfs  for a given set of 
reciprocal lattice points and then uses these in cal- 
culating c%., for each of the desired series of scans. 
When used on a CDC-6400 computer, it required 0.1 
seconds to calculate Kj for a set of 46 reciprocal lattice 
points and it then used an average of 0.01 seconds per 
case to calculate ~w, for various scans of the 27 b.c.c. 
reflections studied previously. This represents a gain 
in speed of two to three orders of magnitude over the 
first program, PTDS2. 

Let us now compare the values of C~w, from this 
simple approach with the corresponding values of 
from the previous, more sophisticated calculations 
made with the program, PTDS2. For the short, 0.5 ° 
scans there is good agreement for both the isotropic 
and the anisotropic samples, the largest differences 
being 2.6 % for the isotropic 444 reflection and 3.2 % 
for the anisotropic 400 reflection. As the scan length 
increases the differences generally increase somewhat, 
but they remain surprisingly small overall, with the 
largest differences occurring for reflections of low 
multiplicity adjacent to reflections of high multiplicity. 
For the isotropic sample the largest difference, Cqv,- ~., 
(that for the 444 reflection) varies smoothly from 
-0 .0002 for A20=0.5 ° to -0.0018 for A20=2.5 °, 
while the smaller differences for the other reflections 
for this range of scans never exceed 5 % of the value of 
c~. For the anisotropic sample the largest difference 
(that for the 400 reflection) increases from -0-0002 

0"20 

0'10 

/* 
0 005  ~ ~ 

10 2O 30 40 

h 2 + k 2 ~ 12 

1 
÷ 

Fig. 3. The included TDS correction for reflections from a 
very anisotropic b.c.c, material (data are for p-CuZn) at 
300°K measured with symmetrical scans and a mean Mo K~ 
single wavelength, as a function of the sum of the squares 
of the indices of the reflections. The solid points display 
7"=7 for a scan length, A20=2.5 °. The crosses display 
~*= 5~ for a scan length, A20= 0.5 °. The crosses have been 
linked with line segments to make the large variations in 
0c more visible. 
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for A20=0.5 ° to -0.0082 for A20=2.5 °, while the 
smaller differences for all except one of the other 
reflections for A20=2.5 ° are less than 9 % of the value 
of e, the exception being the 110 reflection, where the 
difference of 0.0019 is 16% of the value of e. 

Thus this W' model, despite its unrealistic assump- 
tions, is able to yield reasonably accurate values for the 
included TDS correction with small computation 
times for a considerable range of scans even for samples 
with rather extreme anisotropy, so it should prove to 
be a useful approximation for many cases. 

Discussion 

The present study was undertaken to develop a method 
for calculating the thermal diffuse scattering in pgwder 
patterns that would improve on previous approaches 
by employing a correct description of the frequencies 
and polarization vectors of the long-wavelength 
phonons for materials of arbitrary elastic anisotropy. 
The approximations used in treating the shorter-wave- 
length phonons - linear chain dispersion; wavelength- 
independent polarization vectors; spherical Brillouin 
zone - are the same as those of the best previous model 
(Suortti, 1967) and are thought not to be sources of 
significant error. The method has been limited to 
monatomic cubic crystals, to one-phonon scattering, 
to temperatures of the order of the Debye temperature 
or higher, and to scattering angles not much smaller 
than that of the first reflection, and it is more accurate 
for X-ray scattering than for neutron scattering, where 
further approximations are required. 

The theory for our approach, given in the first two 
sections, is a relatively straightforward adaptation of 
single crystal TDS relations (see, for example, Walker 
& Chipman, 1970) to powder pattern conditions, with 
no particularly novel features. We evaluate these equa- 
tions by numerical calculations on a high speed com- 
puter. The results obtained are estimated to be generally 
rather accurate (e.g. 1% or better for an included TDS 
correction), but the approach can be costly in its com- 
puting time requirements because of the complexity 
of the equations and the density of points needed in 
the integrals. 

Using this approach, we have made a number of 
calculations to investigate both the TDS intensity 
distribution in a powder pattern and the correction 
for included TDS in the measured integrated intensities 
of powder lines. The calculations were carried out for 
a b.c.c, lattice, but the general conclusions are expected 
to be valid also for other lattices. These conclusions 
are: 

(1) Despite the powder pattern averaging, elastic 
anisotropy in a lattice can produce marked differences 
both in the TDS intensity distribution and in the in- 
cluded TDS correction. 

(2) The included TDS correction is generally quite 
insensitive to large changes in the characteristics of the 
shorter wavelength phonons, while the TDS intensity 

distribution of course does reflect such changes, the 
effects being most noticeable at angles away from the 
reflections. 

(3) The included TDS correction generally should 
not be expected to vary smoothly with z 2 or linearly 
with the length of scan, even for isotropic samples. 
The Chipman-Paskin approximation, which predicts 
such smoothness and such linearity, can be greatly in 
error for reasonable experimental conditions. 

(4) Instrumental factors such as a doublet wave- 
length distribution can produce significant changes in 
the included TDS correction, particularly for weak reflec- 
tions adjacent to strong reflections, which display the 
most sensitive response to the various factors in the 
calculation. 

Suortti reached essentially the same conclusions as in 
(2)-(4) above, except that he found the instrumental 
effects to be somewhat less important. 

We have also developed a much simpler method for 
calculating the included TDS correction that is two to 
three orders of magnitude faster than our major ap- 
proach at the expense of only a moderate loss in ac- 
curacy. The method uses Warren's one-velocity phonon 
model, modified by specifying that the velocity as- 
sociated with the phonons in the zone around a given 
reciprocal lattice point is to be determined from an 
average of the correct factor for those long-wavelength 
phonons contributing to the scattering in the plane 
perpendicular to that particular reciprocal lattice 
vector. This modification both gives a larger mean 
value for the velocity factor K (and hence the TDS 
intensity) than that from the usual spherical average 
and it also allows the velocity factor to differ for dif- 
ferent reciprocal lattice points when there is elastic 
anisotropy; for example, the values of Kj differ by as 
much as a factor of 4.3 for the very anisotropic case 
we have considered. This W' model of course gives a 
quite unrealistic description of individual phonons, 
but apparently it does contain those features that are 
important for a calculation of the included TDS cor- 
rection for powders, since we find that it gives relatively 
accurate values for most reflections and reasonable 
lengths of scan even for very anisotropic materials. 

Our study was limited to temperatures of the order 
of the Debye temperature or higher. We suggest, how- 
ever, that the calculation of the included TDS cor- 
rection should be valid down to much lower temper- 
atures than this because of its insensitivity to changes 
affecting the shorter wavelength phonons, although 
the calculation of the TDS intensity distribution still 
faces this restriction. Our study was also limited to 
monatomic cubic materials. An approximate exten- 
sion to polyatomic cubic materials can be obtained, 
following Suortti, by ignoring optic modes and 
weighting the intensity contribution from acoustic 
phonons in the zone around a particular reciprocal 
lattice point by the square of the structure factor of 
that Bragg reflection, as well as its multiplicity, in 
place of the common squared structure factor multiplier 
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given in equation (9). While this should offer a reason- 
able first approximation for the included TDS cor- 
rection (but not the intensity distribution), its accuracy 
for weaker reflections and normal scans is open to 
serious question when there are appreciable differences 
between neighboring structure factors (such as in 
NaC1, for example) because of the uncertainty in any 
large negative contributions from 'other'  reciprocal 
lattice points. An extension to non-cubic materials 
should also be possible using the relations derived by 
Rouse & Cooper (1969), but the results should be con- 
siderably more complicated. Finally, our study was 
also limited to one-phonon scattering. Calculations 
based on simple models (Paskin, 1959; Borie, 1961) 
show that the neglected n-phonon TDS varies as 
(2M)"/n! so our calculated intensity distribution can 
give a good estimate of the total TDS only if 2M is 
small. The two-phonon and higher order TDS distri- 
butions appear to peak much less sharply than does 
the one-phonon TDS, so their contribution to an in- 
cluded TDS correction should be much smaller, but 
there has not yet been any specific calculation of these 
quantities. Thus, if the one-phonon included TDS cor- 
rection is large, the neglect of the higher-order terms 
must be recognized to be a possible significant source 
of  error. 

References 

BORIE, B. (1961). Acta Cryst. 14, 566. 
CHIPMAN, D. R. & PASKIN, A. (1959a). J. Appl. Phys. 30, 

1992. 
CHIPMAN, D. R. & PASKIN, A. (1959b). J. Appl. Phys. 30, 

1998. 
COCHRAN, W. (1963). Rep. Progr. Phys. 26, 1. 
HERBSTEIN, F. H. & AVERBACH, B. L. (1955). Acta Cryst. 

8, 843. 
JAMES, R. W. (1948). The Optical Principles of the Diffrac- 

tion of X-rays. London: Bell. 
NILSSON, N. (1957). Ark. Fys. 12, 247. 
PASKIN, A. (1958). Acta Cryst. 11,165. 
PASKIN, A. (1959). Acta Crvst. 12, 290. 
ROUSE, K. D. & COOPER, M. J. (1969). Acta Crvst. A25, 615. 
SCHOENING, F. R. L. (1969). Acta Cryst. A25, 484. 
SUORTTI, P. (1967). Ann. Acad. Sci. Fenn. Ser. A, VI, 240. 
WALKER, C. B. t~. CHIPMAN, D. R. (1969). Acta Cryst. 

A25, 395. 
WALKER, C. B. & CHIPMAN, D. R. (1970). Acta Cryst. A26, 

447. 
WALKER, C. B. & CHIPMAN, D. R. (1972a). Report 

AMMRC TR 72-27. 
WALKER, C. B. & CHIPMAN, D. R. (1972b). Report 

AMMRC TR 72-28. 
WALLER, I. (1925). Dissertation, Uppsala. 
WARREN, B. E. (1953). Acta Cryst. 6, 803. 
WILLIS, B. T. M. (1969). Acta Cryst. A25, 277. 

Acta Cryst. (1972). A28, 580 

Application of Representation Analysis to the Magnetic 
Structure of Nickel Chromite Spinel 
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The magnetic structure of the tetragonal nickel chromite spinel (a0--5-76; c= 8.50 A) has been solved 
by representation analysis in space group I41/amd. Magnetic reflexions decompose into two sets; (a) 
ferrimagnetic ones, produced by a N6el mode along the x-axis and belonging to the two-dimensional 
F59 representation of wave vector k=  [000]; (b) antiferromagnetic reflexions produced by non-colinear 
anticentered y and z modes belonging to a two-dimensional representation of wave vector k=[001]. 
The Shubnikov groups of the ferri- and antiferromagnetic modes considered separately are Imm'a" and 
Ip2'2"2~ respectively. Their intersection has the very low symmetry P2;. The antiferromagnetic mode 
of Ni (in 000 and 0½¼) has only y components (Sy= 0.58). The chromium spins decompose into two 
sets: Cr~ (in 0k~- and ½¼~) has y and z components (Sy= + 0-73 for the former and -0.73 for the latter 

= 40-80 has only z components (S: = 0.86). The total spins are (Ni) = 1.0 atom, Sz -0.45): Crn (in ¼½~z and-t a 
and (Cr) = 1.11, and the moment values are p(Ni) = 2.0 pB: p(Cr)= 2"22PB. The figures are computed 
from neutron diffraction data given by Prince in 1961. An equivalent model (magnetic twin) has 
ferrimagnetism along Oy and antiferromagnetic x and z modes. Magnetic interactions are highly 
anisotropic. 

Introduct ion  

NiCr204 is a normal cubic spinel (Fd3m-O~, above 
TI=310°K and becomes tetragonal below 7"1 (De- 
lorme, 1955; Lotgering, 1956) with a0=5"76, c0=8"50 

A. It is generally admitted that the space group of the 
tetragonal phase is I4~/amd-D] 9 (Prince, 1961) with 

, , , ~0~  4Ni in 4(a)" 000 (1)" 0~¼ (2)" _u_,222 (3)" 1 z (4) 
8Cr in 8(d)" 0¼-~ (1); ~-2s'1 ~ (2); ~2-7481J ! (3); J-O -3-4 s (4) 


